39 research outputs found

    Robustness, Heterogeneity and Structure Capturing for Graph Representation Learning and its Application

    Get PDF
    Graph neural networks (GNNs) are potent methods for graph representation learn- ing (GRL), which extract knowledge from complicated (graph) structured data in various real-world scenarios. However, GRL still faces many challenges. Firstly GNN-based node classification may deteriorate substantially by overlooking the pos- sibility of noisy data in graph structures, as models wrongly process the relation among nodes in the input graphs as the ground truth. Secondly, nodes and edges have different types in the real-world and it is essential to capture this heterogeneity in graph representation learning. Next, relations among nodes are not restricted to pairwise relations and it is necessary to capture the complex relations accordingly. Finally, the absence of structural encodings, such as positional information, deterio- rates the performance of GNNs. This thesis proposes novel methods to address the aforementioned problems: 1. Bayesian Graph Attention Network (BGAT): Developed for situations with scarce data, this method addresses the influence of spurious edges. Incor- porating Bayesian principles into the graph attention mechanism enhances robustness, leading to competitive performance against benchmarks (Chapter 3). 2. Neighbour Contrastive Heterogeneous Graph Attention Network (NC-HGAT): By enhancing a cutting-edge self-supervised heterogeneous graph neural net- work model (HGAT) with neighbour contrastive learning, this method ad- dresses heterogeneity and uncertainty simultaneously. Extra attention to edge relations in heterogeneous graphs also aids in subsequent classification tasks (Chapter 4). 3. A novel ensemble learning framework is introduced for predicting stock price movements. It adeptly captures both group-level and pairwise relations, lead- ing to notable advancements over the existing state-of-the-art. The integration of hypergraph and graph models, coupled with the utilisation of auxiliary data via GNNs before recurrent neural network (RNN), provides a deeper under- standing of long-term dependencies between similar entities in multivariate time series analysis (Chapter 5). 4. A novel framework for graph structure learning is introduced, segmenting graphs into distinct patches. By harnessing the capabilities of transformers and integrating other position encoding techniques, this approach robustly capture intricate structural information within a graph. This results in a more comprehensive understanding of its underlying patterns (Chapter 6)

    A Brief Survey of Deep Learning Approaches for Learning Analytics on MOOCs

    Get PDF
    Massive Open Online Course (MOOC) systems have become prevalent in recent years and draw more attention, a.o., due to the coronavirus pandemic’s impact. However, there is a well-known higher chance of dropout from MOOCs than from conventional off-line courses. Researchers have implemented extensive methods to explore the reasons behind learner attrition or lack of interest to apply timely interventions. The recent success of neural networks has revolutionised extensive Learning Analytics (LA) tasks. More recently, the associated deep learning techniques are increasingly deployed to address the dropout prediction problem. This survey gives a timely and succinct overview of deep learning techniques for MOOCs’ learning analytics. We mainly analyse the trends of feature processing and the model design in dropout prediction, respectively. Moreover, the recent incremental improvements over existing deep learning techniques and the commonly used public data sets have been presented. Finally, the paper proposes three future research directions in the field: knowledge graphs with learning analytics, comprehensive social network analysis, composite behavioural analysis

    MOOC next week dropout prediction: weekly assessing time and learning patterns

    Get PDF
    Although Massive Open Online Course (MOOC) systems have become more prevalent in recent years, associated student attrition rates are still a major drawback. In the past decade, many researchers have sought to explore the reasons behind learner attrition or lack of interest. A growing body of literature recognises the importance of the early prediction of student attrition from MOOCs, since it can lead to timely interventions. Among them, most are concerned with identifying the best features for the entire course dropout prediction. This study focuses on innovations in predicting student dropout rates by examining their next-week-based learning activities and behaviours. The study is based on multiple MOOC platforms including 251,662 students from 7 courses with 29 runs spanning in 2013 to 2018. This study aims to build a generalised early predictive model for the weekly prediction of student completion using machine learning algorithms. In addition, this study is the first to use a ‘learner’s jumping behaviour’ as a feature, to obtain a high dropout prediction accuracy

    INTERACTION: A Generative XAI Framework for Natural Language Inference Explanations

    Full text link
    XAI with natural language processing aims to produce human-readable explanations as evidence for AI decision-making, which addresses explainability and transparency. However, from an HCI perspective, the current approaches only focus on delivering a single explanation, which fails to account for the diversity of human thoughts and experiences in language. This paper thus addresses this gap, by proposing a generative XAI framework, INTERACTION (explaIn aNd predicT thEn queRy with contextuAl CondiTional varIational autO-eNcoder). Our novel framework presents explanation in two steps: (step one) Explanation and Label Prediction; and (step two) Diverse Evidence Generation. We conduct intensive experiments with the Transformer architecture on a benchmark dataset, e-SNLI. Our method achieves competitive or better performance against state-of-the-art baseline models on explanation generation (up to 4.7% gain in BLEU) and prediction (up to 4.4% gain in accuracy) in step one; it can also generate multiple diverse explanations in step two

    Language as a latent sequence: Deep latent variable models for semi-supervised paraphrase generation

    Get PDF
    This paper explores deep latent variable models for semi-supervised paraphrase generation, where the missing target pair for unlabelled data is modelled as a latent paraphrase sequence. We present a novel unsupervised model named variational sequence auto-encoding reconstruction (VSAR), which performs latent sequence inference given an observed text. To leverage information from text pairs, we additionally introduce a novel supervised model we call dual directional learning (DDL), which is designed to integrate with our proposed VSAR model. Combining VSAR with DDL (DDL+VSAR) enables us to conduct semi-supervised learning. Still, the combined model suffers from a cold-start problem. To further combat this issue, we propose an improved weight initialisation solution, leading to a novel two-stage training scheme we call knowledge-reinforced-learning (KRL). Our empirical evaluations suggest that the combined model yields competitive performance against the state-of-the-art supervised baselines on complete data. Furthermore, in scenarios where only a fraction of the labelled pairs are available, our combined model consistently outperforms the strong supervised model baseline (DDL) by a significant margin ( ; Wilcoxon test). Our code is publicly available at https://github.com/jialin-yu/latent-sequence-paraphrase

    Adaptive Finite-Time Command Filtered Fault-Tolerant Control for Uncertain Spacecraft with Prescribed Performance

    No full text
    In this paper, an adaptive finite-time fault-tolerant control scheme is proposed for the attitude stabilization of rigid spacecrafts. A first-order command filter is presented at the second step of the backstepping design to approximate the derivative of the virtual control, such that the singularity problem caused by the differentiation of the virtual control is avoided. Then, an adaptive fuzzy finite-time backstepping controller is developed to achieve the finite-time attitude stabilization subject to inertia uncertainty, external disturbance, actuator saturation, and faults. Through using an error transformation, the prescribed performance boundary is incorporated into the controller design to guarantee the prescribed performance of the system output. Numerical simulations demonstrate the effectiveness of the proposed scheme
    corecore